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Abstract. The performance of the Hopfield model of a neural network with exrensirely 
many weighted patterns is analysed. If the system size is N, then N patterns, each provided 
with a suitable weight, are stored. The weights may be associated with a temporal order 
and, if appropriately chosen, they allow a gradual fading out of the extensively many 
stored patterns. Particular emphasis is put on the underlying mathematical structure. 

1. Introduction 

At a formal level, a neural network is a set of two-state neurons connected by synapses 
and equipped with a certain dynamics that has the memorised patterns as stable 
attractors. One of the main problems of the theory of neural networks is to describe 
the way in which the information should be stored and to find a mechanism which 
allows both retrieval (recollection) and forgetting of the stored patterns. 

One usually considers a fully interconnected network of, say, N neurons. According 
to McCulloch and Pitts [l], a neuron can be in only one of two states (firing and 
non-firing) and it, therefore, can be described by an Ising spin S (  i ) ,  1 G i G N, with 
$1 corresponding to firing and -1 to quiescent. In this context, a pattern is a specific 
Ising spin configuration. 

I t  is generally expected [2-61 that the essential characteristics of the temporal 
behaviour of the network are captured by a Monte Carlo dynamics with a Hamiltonian 
of the form 

Then the dynamics of the network is reduced to a downhill motion in the (free) energy 
landscape associated with HN and the asymptotic stability is governed by its equilibrium 
statistical mechanics. Below a critical temperature T, the ergodicity is broken [7] and 
the stored patterns are associated with attractive sets (equilibrium states or ergodic 
components) in the phase space of the underlying Ising spin glass. 

Following Hebb [8] one locates memory in ?he synapses, i.e. more precisely, in the 
distribution of values of the synaptic efficacies, which are then mapped onto the 
exchange couplings Jv of the Ising spin Hamiltonian (1.1). For suitable couplings, 
the network operates as a fault-tolerant content-addressable (associative) memory; see 
for example 12-61. Additional patterns may be learnt by appropriately modifying the 
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J,. To facilitate the modelling one assumes the patterns {&,; 1 s i s  N}, say with 
1 s 0 s p ,  to be random. That is, the tra = *l are independent, identically distributed 
random variables which assume the values i l  with equal probability. 

The Hopfield model of associative memory [2] is defined by 
P 

J,, = N - '  t,d,*. (1.2) 
a = I  

In  a recent paper [ 9 ] ,  Amit et a1 analysed this network near saturation, i.e. when 
p = a N  and a > 0. Through an ingenious mean-field analysis they showed that at zero 
temperature ( T  = 0) the system can efficiently retrieve information if a < a ,  = 0.14. At 
a,, however, the retrieval states disappear discontinuously and above a ,  no useful 
retrieval is possible. The system performs, so to speak, a first-order transition at a ,  
and has more or less forgotten all information thereafter. From a physiological point 
of view this does not seem very plausible. Therefore, other learning rules have been 
proposed but, as yet, their status is not very satisfying. For instance, Parisi [ lo]  has 
constructed a memory 'which forgets' but in so doing the memory forgets everything 
but the very last patterns. 

In  this paper two things are done. First we rederive the main result of Amit et a1 
[9] in a simpler and more transparent way, paying due attention to the underlying 
mathematical structure. Second, we extend the Hopfield model by storing N patterns 
in a system of size N (so it is fully saturated) and giving each pattern a weight E , .  If  
the labelling of the patterns corresponds to the temporal order in which they arrived 
and E ,  + 0 as v + 00, which seems reasonable, then for suitable weights an extensive 
number of patterns may be stored but, as v proceeds, they are gradually faded out. 

In 0 2 the model itself is defined and its mean-field treatment is analysed. In the 
next section the replica symmetric solution to the free energy is presented. The 
associated storage capacity at T = 0 is obtained in 0 4. A discussion of our results can 
be found in the final section. 

2. Hopfield model with weighted patterns 

We consider the Hamiltonian (1.1) with exchange couplings 
hi 

Each pattern n has a weight E , .  For the time being the weights are arbitrary except 
for the requirement that O S  E ,  s 1. In fact, we could replace the upper limit of the 
sum in (2.1) by a number proportional to but larger than N. We recover the Hopfield 
model by putting E ,  = 1 for 1 s n S a N  and E,  = 0 for n > aN. 

Following Amit et a1 [9] we use the replica method and determine the stability of 
a certain pattern by selecting a jinite number of patterns, to be denoted by v, and 
integrating out the remaining ones, whose labels are indicated by p. For later purposes 
it may be convenient to add an external field that singles out the v-patterns, 

N 

H e x ,  = -E h ,  c & , A i ) .  
Y , = l  

In the context of the replica method [ 111, one first determines 



Weighted patterns in a saturated neural network 3991 

for positive integer n, takes the thermodynamic limit N -$ CO so as to arrive at c$( n ) ,  
and obtains an  extension (usually the replica-symmetric one) to a neighbourhood of 
n = 0. Then Cb’(0) is supposed to give -Pf(p) where f ( P )  is the free energy per spin 
at inverse temperature P. As usual, Z N  = Tr exp(-PH,) is the partition function, a 
sum over all Ising spin configurations. 

The angular brackets in (2.3) denote an  average over the disorder, here the N 
patterns t,,,. Since we first integrate out the p-patterns, we will leave aside the rest of 
the Hamiltonian and instead of (Z”,j concentrate on 

(2.4) 

Here 1 G p G n labels the n replicas. Until the next section (equation (3.5)) we drop  
the constant term - 4 p n  E, E, .  Using the relation 

we linearise the squares in the exponent of (2.4), 

and perform the average with respect to tr, so as to find 

(2.5) 

(2.7) 

One now imagines that the term between the square brackets in (2.7) is ‘small’ and  
replaces In(cosh(x)) for ‘small’ x by ix’. This gives 

where 1 s p, U S  n. Fixing p the integration with respect to mFP can be performed 
exactly and we obtain 

det( Q,)-l” (2.9) 
where Q, is a symmetric n x n matrix with elements 

\ i = l  / 

Here and elsewhere S , ,  is the Kronecker delta. Collecting terms we obtain 

(2.10) 

(2.11) 

Stepping back for a first overview we see [ 121 that something must be wrong. For 
(2.9) to make sense the matrix Q, has to be positive-definite and, therefore, its diagonal 
elements must be positive. However, (Q,),, = 1 - P E ,  is negative for P large enough. 
The reason for this can be traced back to the transition from (2.7) to (2.8). Whereas 
(2.7) is well defined for all P (since In(cosh(x)) - 1x1 as 1x1 -$CO), (2 .8)  is not (fix p and 
take the diagonal elements of the quadratic form in the integrand), and there is no 
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way out. We do need the quadratic approximation of ln(cosh(x)) since otherwise no 
analytic evaluation of (2.7) is possible. Furthermore, as we will see shortly, Q, becomes 
positive-definite in the replica limit n + 0. 

The term (2.11), which still depends on the spins but contains no randomness 
anymore, represents the noise produced by the other patterns and has to be added to 
the remaining part of the Hamiltonian, which contains the v-patterns. This complex 
can be treated exactly, modulo the difficulty we just noted. We have, by (2.3) and (2.1 l ) ,  

(2.12) 

The first trace is a sum over all 2’” Ising spin configurations of the n replicas and the 
second one is an ordinary trace. Let us define the order parameters 

N 

mvp = N - ’  C S i v s p ( i )  l S p S n  
i = l  

Then the expression between the square brackets in (2.12) may be written 

(2.14) 

and it therefore seems natural to perform a coordinate transformation from the Sp( i), 
1 s i s N and 1 S p S n, to mup and qpO as new ‘integration’ variables. To this end we 
only need the ‘Jacobian’ BN(m, q ) .  Indeed, it can be shown [13-151 that, as N + w ,  
the coordinate transformation which we referred to is possible and, with probability one, 

(2.15) g N ( m ,  4 )  = exp(-Nc*(m, 4 ) )  

where 

c*(m, q ) = s u p  ( m . x + q - y - c ( x , y ) )  
( X.Y ) 

is the Legendre transform [16] of a (strictly) convex c-function [13-151, 

(2.16) 

(2.17) 

The second sum in (2.17) is over pairs (p ,  a )  only. The trace refers to n Ising spins 
S,, 1 s p < n, and in the outer average each 5” appears only once; there are finitely 
many of them. In addition [15], as is already implicit in its formulation, (2.15) does 
not depend on the specific random configuration as N + CO. For that reason we may 
drop the angular brackets from (2.12). (This is not a consequence of the self-averaging 
property of the free energy as was asserted by Amit et a1 [9]. The averaging has to 
be done inside the logarithm. In passing we also note that the order parameters rpO 
as introduced by these authors simply can be dispensed with.) 

Combining (2.12)-(2.17) and writing p instead of the pair (m,  q )  we find 

d p  exp[N(F(p ) -c* (p ) ) ]  (2.18) 
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which is, by a Laplace argument, 
(2.19) 

For small enough P this expression is exact but it becomes purely formal as soon as 
/3 max,(e,,) > 1 .  In spite of that we proceed and obtain, as shown in the appendix, 

(2.20) 

where p satisfies the fixed point equation 
P = V c ( V F ( L O ) .  (2.21) 

Equation (2.20) has to be understood in the same sense as (2.19). 
The matrix Q,(q) has elements ( p  < U )  

( Q ,  Ipm = 6pu(1 -PE, , )  - PE,,qpu = (Q, ) c p .  (2.22) 

Using the relation 
a - Tr In Q = 2( Q - l ) p m  

a Qpu 

one easily verifies that, with p = (m,  q ) ,  

(2.23) 

(2.24) 

We now perform the extension of (2.20) to n = 0 by assuming replica symmetry. 

3. Replica symmetry 

We require that all the replicas be equal so that mvp = mu and qpm = q ( p  # U ) .  This 
requirement is consistent with the fixed point equation (2.21). Moreover, 

(3 .1 )  
where 1 is the unit matrix, 1 is the vector ( 1 , 1 , .  . . , 1 )  ER", and P = P 2  is a projection 
operator. Through the ansatz e-'= c - d P  the inverse of Q is easily obtained and 
( P  f ff) 

(Q- ' Ipv  = - b ( n ) [ a ( n ) ( n b ( n ) -  a(n1)I-I.  (3.2) 

N - '  c P E r ( Q ; l ) p c r  = P 2 q r ( n ) ,  

Hence we can write 

(3 .3 )  
CI 

where r ( n )  does not depend explicitly on p, and by (2.24) 

(3.4) 

Using (3.1) one directly verifies that the eigenvalues of Q,, (9) are 1 - PE, ( 1  - q )  + PE,,qn, 
which is simple, and 1 - P&,,(l - q ) ,  which is ( n  - 1)-fold degenerate. In the limit n + 0 
one is left with l - p ~ , ( l  -41, which has to be positive; cf (3.7) below. In the next 
section and in the Hopfield model as considered by Amit er a1 [9] one can verify that, 
this limit value is indeed positive. 
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Combining (2 .17) ,  ( 2 . 2 0 )  and ( 3 . 1 ) - ( 3 . 4 ) ,  and adding the constant we dropped from 
( 2 . 4 )  we obtain 

+ ( n - l )  ~ n [ l - p ~ , ( l - q ) ] ) - f n ( n - l ) ( ~ q ) ’ r ( n )  

( E A +  h,)t,S, +fP’ C q r ( n ) S , S , ) ) .  ( 3 . 5 )  
P + U  

If we use the linearisation trick ( 2 . 5 )  and carry out the trace, we can rewrite the last 
term of ( 3 . 5 )  in the form 

-+np’qr(  n )  + n In 2 

) ( 3 . 6 )  e-z2’2 coshn{P[(sm+h) & + ( q r ( n ) ) ” ’ z ] }  
dz  

where E = diag(s,) is a diagonal matrix. Taking the ‘evident’ real variable extension 
of 4 ( n )  we then obtain 

with N very large and 

r = Iim r ( n )  = N - ’  C - P E , ( I  - q ) ] - ’ ~  0. 
l l -0  P 

Furthermore, one should choose that solution of the fixed point equations, 

m = ((g tanh[p (( Em + h )  - & + ( q r ) ” ’ ~ ) ] ) )  

q =((tanh’[p((m+h) &+(qr)”’z)])) 

( 3 . 9 a )  

( 3 . 9 b )  

which maximises the right-hand side of ( 3 . 7 ) .  The double angular brackets in ( 3 . 9 )  
denote an average with respect to both the finite number of and the Gaussian 
distribution of z. If E,  = 1 for 1 c p cuN and E ,  = 0 for p > (YN,  then ( 3 . 7 ) - ( 3 . 9 )  
reproduce the result of Amit et a1 [ 9 ] .  Throughout what follows we put h = 0. In view 
of (3 .8)  and ( 3 . 9 )  we interpret r as a renormalisation constant that rescales the order 
parameter q. I t  is a consequence of the noise generated by the ‘infinitely~many’ other 
patterns ( N  + CO). 

4. Storage capacity 

Given a collection of weights E,, the storage capacity is the (maximum) number of 
patterns which have not lost their own stability completely. In this section we study 
the storage capacity at T = 0 of a network with E, = p--‘ and x > 0. For suitable x 
there is a gradual fading out of the patterns as p proceeds. One easily verifies that 
for x >  0 the average N - ‘  X, p-’ converges to zero (Ctsaro convergence) and, 
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therefore, that N-l Ip  Tr(ln Q p ) ,  the background noise, converges to zero too. This 
does not mean, however, that it can be neglected completely, since the weight E, of 
a pattern p also converges to zero as p + W .  There is a trade off between the two, 
which we now want to determine. 

We have to take two limits, N -+ CC and /3 -00, which have to be performed in a 
specific order. First we have to take the thermodynamic limit N + 00, then the zero- 
temperature limit p + a. The two limits cannot be interchanged. Since it is evident 
that q will approach one  we start with ( 3 . 9 ~ ) .  In the limit p + CC, the tanh{. . .} in 
( 3 . 9 ~ )  reduces to sgn{. . .} and the integral over the Gaussian distribution gives up to 
a term of order T an  error function 

where 

erf(x) =p dy e-?2 ib 
is the error function, so that ( 3 . 9 ~ )  reduces to 

m = ( 6  erf(&m - 6/(2r)1'2))C. (4.3) 

We are interested in the behaviour of a speciJic pattern, say v. Then m is assumed to 
have only one component m and 

(4.4) 

As is evident from (2.13), the closer m is to one, the better is the retrieval. Because 
the weights E ,  tend to zero in CCsaro mean, r approaches zero as N + CC and, for $xed 
v, m tends to one. In the same sense we get for a finite group of fixed indices U and 
for finite p, 

m = (tY erf(me,(,/(2r)'I2)) = e r f ( m ~ , / ( 2 r ) l ' ~ ) .  

m = ( 6  tanh{pem g})* (4.5) 

m = tanh(pEvm). (4.6) 

and for a single non-zero component 

The larger v, the smaller the critical temperature T,( v )  at which a non-zero m branches 
off into the direction of the pattern v. 

We now turn to (3.96). In the thermodynamic limit it reduces to 

q = (tanh2{p&m - &})* (4.7) 

and, as ,L? +CO, it then converges to one at an  exponential rate. Hence C ( p )  = p (  1 - q )  
converges to zero. As before, E = diag( E " ) .  

What happens at finite but very large N ?  How many patterns can we store at  
T = O ?  The noise factor r is not completely zero yet. It can be estimated by using the 
above observation in tandem with (3.8), 
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if x # f  and by 

d p  p-’  = N-’ In N 5’” r =  N-’ (4.10) 

if x = f. We discern three cases: (a) 0 < x < 4, (b) x = f and (c) x > 4. In the first case 
the tail of the integral in (4.9) dominates and we find 

(4.11a) 

In the second case, when x = f, we obtain the same behaviour but the divergence is 
logarithmic, 

(4.1 1 b )  

r = ( 1  - 2x)-’ N-2“. 

r = N - ’  In N 

whereas in the last case the region p = 1 dominates so that 

r = (2x - l ) - ’N- ’ .  ( 4 . 1 1 ~ )  

With these values of r return to (4.4). 
The function $(x) = erf( ~ x )  is concave (77 > 0) and monotonically increasing for 

x 2 0 .  It starts at zero and converges to one. In short, it more or less behaves like 
tanh(7x) were it not that its slope at zero is 2 7 7 / ~ ” ~ ;  cf (4.2). Therefore, the equation 

m = erf( T m )  (4.12) 

has only one solution, m = 0, if 2 7 7 / 7 ~ ” ~  < 1, i.e. if 77 < q,= f7~’”. For T )  > qc there 
also exists a non-trivial solution that converges to zero conrinuously as 77 approaches 
77, from above. 

In view of (4.4) and (4.11) there exists a critical U, such that for v >  v, no pattern 
can be stored. We have 

In case (a) we then find 
L/2 

( 1  - 2 x ) - ” ’ ( 3  = (:) 

(4.13) 

(4.14) 

so that v, is extensive, 

U, = [ ( 1  - 2 ~ ) 2 /  ~ T ] ” ~ ~ N .  (4.15a) 

In case (b) we simply obtain 

v , = ( 2 / ~ ) N / l n  N (4.15 b )  
whereas in case (c), where 2x> 1, 

v , = [ ( ~ x -  1 ) 2 / ~ ] ” * “ N ” ~ “ .  ( 4 . 1 5 ~ )  

That is, neither case (b) nor case (c) gives rise to an extensive U,. 
One can optimise the prefactor a = [ ( 1 - 2 ~ ) 2 / ~ ] ” ~ ”  in (4.15a) by varying x. This 

gives a,,,=0.103 for x=0.280. However, for this value of x one has to decrease v 
to about 0.01 N to get an error percentage less than 0.5%. Alternatively, one can fix 
the error percentage, say 0.5’/0, and look for the value of x that maximises the 
corresponding v. This gives u,,,=O.O13 N for x=O.386, which is not a great 
improvement. 
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The rationale of the above optimisation is simple. If x = 0, the memory is in a state 
of total confusion [9] and no pattern can be stored. On the other hand, if x 2 :  and 
v + CO, a pattern is too readily lost in the background noise and an extensive storage 
capacity is not possible either. The optimal x is between these two situations. 

5. Discussion 

For the weight E ,  = v-' a critical v, exists such that all correlations with the stored 
patterns are lost if the index v exceeds v,: the patterns have disappeared in the 
background noise, For v <  vc there is a definite correlation, which approaches zero 
continuously as v tends to v, from below. The patterns are gradually faded out and 
there is a continuous transition at v,. If O < x < &  then vc is an extensive quantity, 
proportional to the size of the system. 

A qualitative understanding of these results, in particular of (4.15), is easy to obtain. 
At zero temperature a pattern v should be a stable fixed point of the dynamics 

S (  i )  := sgn c J i j S ( j )  . 
( J  ) 

The JV are given by (2.1) and, thus, 

J ,  a 2 E n t t n t j n .  
n 

Hence ( N  - 1 5  N )  

(5.1) 

(5.2) 

The sum over p ( # v )  and j ( # i )  is a sum over independent identically distributed 
random variables whose order of magnitude is given by the square root of its variance, 
( N E +  E ~ )  . Then v, is determined by the condition that the two terms in (5.3) be 
of equal magnitude, 

2 1 / 2  

( 5 N E:. (5.4) 
IJ 

At v = v, we then find 

where, by definition, E: = v-2x .  This, combined with (4.8)-(4.10), reproduces (4.15)- 
apart from the (essential) 2/71, which comes from the error function in (4.4). Without 
this factor 2/71 the optimal value of the proportionality constant a would have been 
given by the maximum e-' = 0.368 of the function ( 1  - 2 ~ ) " ' ~ ,  which is attained at 
x = 0'. 

Summarising, we have presented a simple, straightforward, and careful derivation 
of the thermodynamics of the Hopfield model near saturation. In so doing we have 
confirmed the key results of Amit er a1 [9] and extended the model by introducing 
weights E , .  For suitable E,, there is a gradual fading out of the patterns as v proceeds 
(or time runs backwards). Further evidence is needed to decide whether forgetting is 
an inherent property of the memory, or a matter of time (or both). 
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Appendix 

We want to show that if c ( t )  is a strictly convex function with Legendre transform 
c*( m )  and F (  m )  is smooth, then 

may be written 

where p satisfies the fixed point equation 

p = V c ( V F ( p ) ) .  ('43) 

The proof is simple. We note that t +  V c ( t )  is a mapping of R", say, into R". Its inverse 
exists and equals [16] Vc*.  Since the supremum in ( A l )  is realised among those m 
which satisfy the relation V F ( m )  = Vc*(m),  we immediately obtain the fixed point 
equation 

m =Vc(VF(m)) .  (A4) 

Its solutions are denoted by p. 
We now evaluate c*(p) .  By definition, 

c * ( p )  = sup  ( p  t - c ( t ) ) .  
1 

To obtain the supremum we have to find a r so well behaved that 

Vc( t )  = p. (A61 

However, p satisfies (A4). By comparison we see that t = V F ( p ) .  If we substitute 
this into (A5) and return to ( A l ) ,  then (A2) follows directly. 

Note added. After this paper was completed in Dubna (August 1986) we learned that a parallel work has 
been performed by Mezard et al [17]. Since the intentions of these authors are rather different, as are the 
conclusions, there are in our  opinion enough reasons to warrant separate publication of the present paper. 
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